skfolio#
skfolio is a Python library for portfolio optimization built on top of scikit-learn. It offers a unified interface and tools compatible with scikit-learn to build, fine-tune, and cross-validate portfolio models.
It is distributed under the open-source 3-Clause BSD license.
Installation#
skfolio
is available on PyPI and can be installed with:
$ pip install skfolio
Key Concepts#
Since the development of modern portfolio theory by Markowitz (1952), mean-variance optimization (MVO) has received considerable attention.
Unfortunately, it faces a number of shortcomings, including high sensitivity to the input parameters (expected returns and covariance), weight concentration, high turnover, and poor out-of-sample performance.
It is well-known that naive allocation (1/N, inverse-vol, etc.) tends to outperform MVO out-of-sample (DeMiguel, 2007).
Numerous approaches have been developed to alleviate these shortcomings (shrinkage, additional constraints, regularization, uncertainty set, higher moments, Bayesian approaches, coherent risk measures, left-tail risk optimization, distributionally robust optimization, factor model, risk-parity, hierarchical clustering, ensemble methods, pre-selection, etc.).
Given the large number of methods, and the fact that they can be combined, there is a need for a unified framework with a machine-learning approach to perform model selection, validation, and parameter tuning while mitigating the risk of data leakage and overfitting.
This framework is built on scikit-learn’s API.
Available models#
- Portfolio Optimization:
- Naive:
Equal-Weighted
Inverse-Volatility
Random (Dirichlet)
- Convex:
Mean-Risk
Risk Budgeting
Maximum Diversification
Distributionally Robust CVaR
- Clustering:
Hierarchical Risk Parity
Hierarchical Equal Risk Contribution
Nested Clusters Optimization
- Ensemble Methods:
Stacking Optimization
- Expected Returns Estimator:
Empirical
Exponentially Weighted
Equilibrium
Shrinkage
- Covariance Estimator:
Empirical
Gerber
Denoising
Detoning
Exponentially Weighted
Ledoit-Wolf
Oracle Approximating Shrinkage
Shrunk Covariance
Graphical Lasso CV
Implied Covariance
- Distance Estimator:
Pearson Distance
Kendall Distance
Spearman Distance
Covariance Distance (based on any of the above covariance estimators)
Distance Correlation
Variation of Information
- Prior Estimator:
Empirical
Black & Litterman
Factor Model
- Uncertainty Set Estimator:
- On Expected Returns:
Empirical
Circular Bootstrap
- On Covariance:
Empirical
Circular Bootstrap
- Pre-Selection Transformer:
Non-Dominated Selection
Select K Extremes (Best or Worst)
Drop Highly Correlated Assets
Select Non-Expiring Assets
Select Complete Assets (handle late inception, delisting, etc.)
- Cross-Validation and Model Selection:
Compatible with all
sklearn
methods (KFold, etc.)Walk Forward
Combinatorial Purged Cross-Validation
- Hyper-Parameter Tuning:
Compatible with all
sklearn
methods (GridSearchCV, RandomizedSearchCV)
- Risk Measures:
Variance
Semi-Variance
Mean Absolute Deviation
First Lower Partial Moment
CVaR (Conditional Value at Risk)
EVaR (Entropic Value at Risk)
Worst Realization
CDaR (Conditional Drawdown at Risk)
Maximum Drawdown
Average Drawdown
EDaR (Entropic Drawdown at Risk)
Ulcer Index
Gini Mean Difference
Value at Risk
Drawdown at Risk
Entropic Risk Measure
Fourth Central Moment
Fourth Lower Partial Moment
Skew
Kurtosis
- Optimization Features:
Minimize Risk
Maximize Returns
Maximize Utility
Maximize Ratio
Transaction Costs
Management Fees
L1 and L2 Regularization
Weight Constraints
Group Constraints
Budget Constraints
Tracking Error Constraints
Turnover Constraints
Cardinality and Group Cardinality Constraints
Threshold (Long and Short) Constraints
Quickstart#
The code snippets below are designed to introduce the functionality of skfolio
so you
can start using it quickly. It follows the same API as scikit-learn.
For more detailed information see the Examples, User Guide and API Reference .
Imports#
from sklearn import set_config
from sklearn.model_selection import (
GridSearchCV,
KFold,
RandomizedSearchCV,
train_test_split,
)
from sklearn.pipeline import Pipeline
from scipy.stats import loguniform
from skfolio import RatioMeasure, RiskMeasure
from skfolio.datasets import load_factors_dataset, load_sp500_dataset
from skfolio.model_selection import (
CombinatorialPurgedCV,
WalkForward,
cross_val_predict,
)
from skfolio.moments import (
DenoiseCovariance,
DetoneCovariance,
EWMu,
GerberCovariance,
ShrunkMu,
)
from skfolio.optimization import (
MeanRisk,
NestedClustersOptimization,
ObjectiveFunction,
RiskBudgeting,
)
from skfolio.pre_selection import SelectKExtremes
from skfolio.preprocessing import prices_to_returns
from skfolio.prior import BlackLitterman, EmpiricalPrior, FactorModel
from skfolio.uncertainty_set import BootstrapMuUncertaintySet
Load Dataset#
prices = load_sp500_dataset()
Train/Test split#
X = prices_to_returns(prices)
X_train, X_test = train_test_split(X, test_size=0.33, shuffle=False)
Minimum Variance#
model = MeanRisk()
Fit on training set#
model.fit(X_train)
print(model.weights_)
Predict on test set#
portfolio = model.predict(X_test)
print(portfolio.annualized_sharpe_ratio)
print(portfolio.summary())
Maximum Sortino Ratio#
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
risk_measure=RiskMeasure.SEMI_VARIANCE,
)
Denoised Covariance & Shrunk Expected Returns#
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=EmpiricalPrior(
mu_estimator=ShrunkMu(), covariance_estimator=DenoiseCovariance()
),
)
Uncertainty Set on Expected Returns#
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
mu_uncertainty_set_estimator=BootstrapMuUncertaintySet(),
)
Weight Constraints & Transaction Costs#
model = MeanRisk(
min_weights={"AAPL": 0.10, "JPM": 0.05},
max_weights=0.8,
transaction_costs={"AAPL": 0.0001, "RRC": 0.0002},
groups=[
["Equity"] * 3 + ["Fund"] * 5 + ["Bond"] * 12,
["US"] * 2 + ["Europe"] * 8 + ["Japan"] * 10,
],
linear_constraints=[
"Equity <= 0.5 * Bond",
"US >= 0.1",
"Europe >= 0.5 * Fund",
"Japan <= 1",
],
)
model.fit(X_train)
Risk Parity on CVaR#
model = RiskBudgeting(risk_measure=RiskMeasure.CVAR)
Risk Parity & Gerber Covariance#
model = RiskBudgeting(
prior_estimator=EmpiricalPrior(covariance_estimator=GerberCovariance())
)
Nested Cluster Optimization with Cross-Validation and Parallelization#
model = NestedClustersOptimization(
inner_estimator=MeanRisk(risk_measure=RiskMeasure.CVAR),
outer_estimator=RiskBudgeting(risk_measure=RiskMeasure.VARIANCE),
cv=KFold(),
n_jobs=-1,
)
Randomized Search of the L2 Norm#
randomized_search = RandomizedSearchCV(
estimator=MeanRisk(),
cv=WalkForward(train_size=252, test_size=60),
param_distributions={
"l2_coef": loguniform(1e-3, 1e-1),
},
)
randomized_search.fit(X_train)
best_model = randomized_search.best_estimator_
print(best_model.weights_)
Grid Search on embedded parameters#
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
risk_measure=RiskMeasure.VARIANCE,
prior_estimator=EmpiricalPrior(mu_estimator=EWMu(alpha=0.2)),
)
print(model.get_params(deep=True))
gs = GridSearchCV(
estimator=model,
cv=KFold(n_splits=5, shuffle=False),
n_jobs=-1,
param_grid={
"risk_measure": [
RiskMeasure.VARIANCE,
RiskMeasure.CVAR,
RiskMeasure.VARIANCE.CDAR,
],
"prior_estimator__mu_estimator__alpha": [0.05, 0.1, 0.2, 0.5],
},
)
gs.fit(X)
best_model = gs.best_estimator_
print(best_model.weights_)
Black & Litterman Model#
views = ["AAPL - BBY == 0.03 ", "CVX - KO == 0.04", "MSFT == 0.06 "]
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=BlackLitterman(views=views),
)
Factor Model#
factor_prices = load_factors_dataset()
X, y = prices_to_returns(prices, factor_prices)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=False)
model = MeanRisk(prior_estimator=FactorModel())
model.fit(X_train, y_train)
print(model.weights_)
portfolio = model.predict(X_test)
print(portfolio.calmar_ratio)
print(portfolio.summary())
Factor Model & Covariance Detoning#
model = MeanRisk(
prior_estimator=FactorModel(
factor_prior_estimator=EmpiricalPrior(covariance_estimator=DetoneCovariance())
)
)
Black & Litterman Factor Model#
factor_views = ["MTUM - QUAL == 0.03 ", "SIZE - TLT == 0.04", "VLUE == 0.06"]
model = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=FactorModel(
factor_prior_estimator=BlackLitterman(views=factor_views),
),
)
Pre-Selection Pipeline#
set_config(transform_output="pandas")
model = Pipeline(
[
("pre_selection", SelectKExtremes(k=10, highest=True)),
("optimization", MeanRisk()),
]
)
model.fit(X_train)
portfolio = model.predict(X_test)
K-fold Cross-Validation#
model = MeanRisk()
mmp = cross_val_predict(model, X_test, cv=KFold(n_splits=5))
# mmp is the predicted MultiPeriodPortfolio object composed of 5 Portfolios (1 per testing fold)
mmp.plot_cumulative_returns()
print(mmp.summary()
Combinatorial Purged Cross-Validation#
model = MeanRisk()
cv = CombinatorialPurgedCV(n_folds=10, n_test_folds=2)
print(cv.get_summary(X_train))
population = cross_val_predict(model, X_train, cv=cv)
population.plot_distribution(
measure_list=[RatioMeasure.SHARPE_RATIO, RatioMeasure.SORTINO_RATIO]
)
population.plot_cumulative_returns()
print(population.summary())
Recognition#
We would like to thank all contributors to our direct dependencies, such as scikit-learn and cvxpy, as well as the contributors of the following resources that served as sources of inspiration:
* PyPortfolioOpt
* Riskfolio-Lib
* scikit-portfolio
* microprediction
* statsmodels
* rsome
* gautier.marti.ai
Citation#
If you use skfolio
in a scientific publication, we would appreciate citations:
Bibtex entry:
@misc{skfolio,
author = {Hugo Delatte, Carlo Nicolini},
title = {skfolio},
year = {2023},
url = {https://github.com/skfolio/skfolio}