Source code for skfolio.distribution.univariate._student_t

"""Univariate Student's t Estimation."""

# Copyright (c) 2025
# Authors: The skfolio developers
# Credits: Matteo Manzi, Vincent Maladière, Carlo Nicolini
# SPDX-License-Identifier: BSD-3-Clause

import numpy.typing as npt
import scipy.stats as st

from skfolio.distribution.univariate._base import BaseUnivariateDist


[docs] class StudentT(BaseUnivariateDist): r"""Student's t Distribution Estimation. This estimator fits a univariate Student's t distribution to the input data. The probability density function is: .. math:: f(x, \nu) = \frac{\Gamma((\nu+1)/2)} {\sqrt{\pi \nu} \Gamma(\nu/2)} (1+x^2/\nu)^{-(\nu+1)/2} where :math:`x` is a real number and the degrees of freedom parameter :math:`\nu` (denoted `dof` in the implementation) satisfies :math:`\nu > 0`. :math:`\Gamma` is the gamma function (`scipy.special.gamma`). The probability density above is defined in the "standardized" form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, `pdf(x, df, loc, scale)` is equivalent to `pdf(y, df) / scale` with `y = (x - loc) / scale`. For more information, you can refer to the `scipy documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html#scipy.stats.t>`_ Parameters ---------- loc : float or None, default=None If provided, the location parameter is fixed to this value during fitting. Otherwise, it is estimated from the data. scale : float or None, default=None If provided, the scale parameter is fixed to this value during fitting. Otherwise, it is estimated from the data. random_state : int, RandomState instance or None, default=None Seed or random state to ensure reproducibility. Attributes ---------- dof_ : float The fitted degrees of freedom for the Student's t distribution. loc_ : float The fitted location parameter. scale_ : float The fitted scale parameter. Examples -------- >>> from skfolio.datasets import load_sp500_index >>> from skfolio.preprocessing import prices_to_returns >>> from skfolio.distribution.univariate import StudentT >>> >>> # Load historical prices and convert them to returns >>> prices = load_sp500_index() >>> X = prices_to_returns(prices) >>> >>> # Initialize the estimator. >>> model = StudentT() >>> >>> # Fit the model to the data. >>> model.fit(X) >>> >>> # Display the fitted parameters. >>> print(model.fitted_repr) StudentT(2.75, 0.000618, 0.00681) >>> >>> # Compute the log-likelihood, total log-likelihood, CDF, PPF, AIC, and BIC >>> log_likelihood = model.score_samples(X) >>> score = model.score(X) >>> cdf = model.cdf(X) >>> ppf = model.ppf(X) >>> aic = model.aic(X) >>> bic = model.bic(X) >>> >>> # Generate 5 new samples from the fitted distribution. >>> samples = model.sample(n_samples=5) >>> >>> # Plot the estimated probability density function (PDF). >>> fig = model.plot_pdf() >>> fig.show() """ dof_: float loc_: float scale_: float _scipy_model = st.t def __init__( self, loc: float | None = None, scale: float | None = None, random_state: int | None = None, ): super().__init__(random_state=random_state) self.loc = loc self.scale = scale @property def _scipy_params(self) -> dict[str, float]: """Dictionary of parameters to pass to the underlying SciPy distribution.""" return {"loc": self.loc_, "scale": self.scale_, "df": self.dof_}
[docs] def fit(self, X: npt.ArrayLike, y=None) -> "StudentT": """Fit the univariate Student's t distribution model. Parameters ---------- X : array-like of shape (n_observations, 1) The input data. X must contain a single column. y : None Ignored. Provided for compatibility with scikit-learn's API. Returns ------- self : StudentT Returns the instance itself. """ X = self._validate_X(X, reset=True) fixed_params = {} if self.loc is not None: fixed_params["floc"] = self.loc if self.scale is not None: fixed_params["fscale"] = self.scale self.dof_, self.loc_, self.scale_ = self._scipy_model.fit(X, **fixed_params) return self