Source code for skfolio.distribution.univariate._student_t
"""Univariate Student's t Estimation."""
# Copyright (c) 2025
# Authors: The skfolio developers
# Credits: Matteo Manzi, Vincent Maladière, Carlo Nicolini
# SPDX-License-Identifier: BSD-3-Clause
import numpy.typing as npt
import scipy.stats as st
from skfolio.distribution.univariate._base import BaseUnivariateDist
[docs]
class StudentT(BaseUnivariateDist):
r"""Student's t Distribution Estimation.
This estimator fits a univariate Student's t distribution to the input data.
The probability density function is:
.. math::
f(x, \nu) = \frac{\Gamma((\nu+1)/2)}
{\sqrt{\pi \nu} \Gamma(\nu/2)}
(1+x^2/\nu)^{-(\nu+1)/2}
where :math:`x` is a real number and the degrees of freedom parameter :math:`\nu`
(denoted `dof` in the implementation) satisfies :math:`\nu > 0`. :math:`\Gamma` is
the gamma function (`scipy.special.gamma`).
The probability density above is defined in the "standardized" form. To shift
and/or scale the distribution use the loc and scale parameters. Specifically,
`pdf(x, df, loc, scale)` is equivalent to `pdf(y, df) / scale` with
`y = (x - loc) / scale`.
For more information, you can refer to the `scipy documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.t.html#scipy.stats.t>`_
Parameters
----------
loc : float or None, default=None
If provided, the location parameter is fixed to this value during fitting.
Otherwise, it is estimated from the data.
scale : float or None, default=None
If provided, the scale parameter is fixed to this value during fitting.
Otherwise, it is estimated from the data.
random_state : int, RandomState instance or None, default=None
Seed or random state to ensure reproducibility.
Attributes
----------
dof_ : float
The fitted degrees of freedom for the Student's t distribution.
loc_ : float
The fitted location parameter.
scale_ : float
The fitted scale parameter.
Examples
--------
>>> from skfolio.datasets import load_sp500_index
>>> from skfolio.preprocessing import prices_to_returns
>>> from skfolio.distribution.univariate import StudentT
>>>
>>> # Load historical prices and convert them to returns
>>> prices = load_sp500_index()
>>> X = prices_to_returns(prices)
>>>
>>> # Initialize the estimator.
>>> model = StudentT()
>>>
>>> # Fit the model to the data.
>>> model.fit(X)
>>>
>>> # Display the fitted parameters.
>>> print(model.fitted_repr)
StudentT(2.75, 0.000618, 0.00681)
>>>
>>> # Compute the log-likelihood, total log-likelihood, CDF, PPF, AIC, and BIC
>>> log_likelihood = model.score_samples(X)
>>> score = model.score(X)
>>> cdf = model.cdf(X)
>>> ppf = model.ppf(X)
>>> aic = model.aic(X)
>>> bic = model.bic(X)
>>>
>>> # Generate 5 new samples from the fitted distribution.
>>> samples = model.sample(n_samples=5)
>>>
>>> # Plot the estimated probability density function (PDF).
>>> fig = model.plot_pdf()
>>> fig.show()
"""
dof_: float
loc_: float
scale_: float
_scipy_model = st.t
def __init__(
self,
loc: float | None = None,
scale: float | None = None,
random_state: int | None = None,
):
super().__init__(random_state=random_state)
self.loc = loc
self.scale = scale
@property
def _scipy_params(self) -> dict[str, float]:
"""Dictionary of parameters to pass to the underlying SciPy distribution."""
return {"loc": self.loc_, "scale": self.scale_, "df": self.dof_}
[docs]
def fit(self, X: npt.ArrayLike, y=None) -> "StudentT":
"""Fit the univariate Student's t distribution model.
Parameters
----------
X : array-like of shape (n_observations, 1)
The input data. X must contain a single column.
y : None
Ignored. Provided for compatibility with scikit-learn's API.
Returns
-------
self : StudentT
Returns the instance itself.
"""
X = self._validate_X(X, reset=True)
fixed_params = {}
if self.loc is not None:
fixed_params["floc"] = self.loc
if self.scale is not None:
fixed_params["fscale"] = self.scale
self.dof_, self.loc_, self.scale_ = self._scipy_model.fit(X, **fixed_params)
return self