"""Covariance Denoising Estimators."""
# Copyright (c) 2023
# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause
# Implementation derived from:
# scikit-learn, Copyright (c) 2007-2010 David Cournapeau, Fabian Pedregosa, Olivier
# Grisel Licensed under BSD 3 clause.
import numpy as np
import numpy.typing as npt
import scipy.optimize as sco
import sklearn.neighbors as skn
import sklearn.utils.metadata_routing as skm
import sklearn.utils.validation as skv
from skfolio.moments.covariance._base import BaseCovariance
from skfolio.moments.covariance._empirical_covariance import EmpiricalCovariance
from skfolio.utils.stats import corr_to_cov, cov_to_corr
from skfolio.utils.tools import check_estimator
[docs]
class DenoiseCovariance(BaseCovariance):
"""Covariance Denoising estimator.
The goal of Covariance Denoising is to reduce the noise and enhance the signal of
the empirical covariance matrix [1]_.
It reduces the ill-conditioning of the traditional covariance estimate by
differentiating the eigenvalues associated with noise from the eigenvalues
associated with signal.
Denoising replaces the eigenvalues of the eigenvectors classified as random by
Marčenko-Pastur with a constant eigenvalue.
Parameters
----------
covariance_estimator : BaseCovariance, optional
:ref:`Covariance estimator <covariance_estimator>` to estimate the covariance
matrix that will be denoised.
The default (`None`) is to use :class:`~skfolio.moments.EmpiricalCovariance`.
nearest : bool, default=True
If this is set to True, the covariance is replaced by the nearest covariance
matrix that is positive definite and with a Cholesky decomposition than can be
computed. The variance is left unchanged.
A covariance matrix that is not positive definite often occurs in high
dimensional problems. It can be due to multicollinearity, floating-point
inaccuracies, or when the number of observations is smaller than the number of
assets. For more details, see :func:`~skfolio.utils.stats.cov_nearest`.
The default is `True`.
higham : bool, default=False
If this is set to True, the Higham & Nick (2002) algorithm is used to find the
nearest PD covariance, otherwise the eigenvalues are clipped to a threshold
above zeros (1e-13). The default is `False` and use the clipping method as the
Higham & Nick algorithm can be slow for large datasets.
higham_max_iteration : int, default=100
Maximum number of iteration of the Higham & Nick (2002) algorithm.
The default value is `100`.
Attributes
----------
covariance_ : ndarray of shape (n_assets, n_assets)
Estimated covariance.
covariance_estimator_ : BaseCovariance
Fitted `covariance_estimator`.
n_features_in_ : int
Number of assets seen during `fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of assets seen during `fit`. Defined only when `X`
has assets names that are all strings.
References
----------
.. [1] "Machine Learning for Asset Managers".
Elements in Quantitative Finance.
Lòpez de Prado (2020).
"""
covariance_estimator_: BaseCovariance
def __init__(
self,
covariance_estimator: BaseCovariance | None = None,
nearest: bool = True,
higham: bool = False,
higham_max_iteration: int = 100,
):
super().__init__(
nearest=nearest,
higham=higham,
higham_max_iteration=higham_max_iteration,
)
self.covariance_estimator = covariance_estimator
[docs]
def fit(self, X: npt.ArrayLike, y=None, **fit_params) -> "DenoiseCovariance":
"""Fit the Covariance Denoising estimator.
Parameters
----------
X : array-like of shape (n_observations, n_assets)
Price returns of the assets.
y : Ignored
Not used, present for API consistency by convention.
**fit_params : dict
Parameters to pass to the underlying estimators.
Only available if `enable_metadata_routing=True`, which can be
set by using ``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : DenoiseCovariance
Fitted estimator.
"""
routed_params = skm.process_routing(self, "fit", **fit_params)
# fitting estimators
self.covariance_estimator_ = check_estimator(
self.covariance_estimator,
default=EmpiricalCovariance(),
check_type=BaseCovariance,
)
# noinspection PyArgumentList
self.covariance_estimator_.fit(X, y, **routed_params.covariance_estimator.fit)
# we validate and convert to numpy after all models have been fitted to keep
# features names information.
X = skv.validate_data(self, X)
n_observations, n_assets = X.shape
q = n_observations / n_assets
corr, std = cov_to_corr(self.covariance_estimator_.covariance_)
e_val, e_vec = np.linalg.eigh(corr)
indices = e_val.argsort()[::-1]
e_val, e_vec = e_val[indices], e_vec[:, indices]
def _marchenko(x_var):
e_min, e_max = (
x_var * (1 - (1.0 / q) ** 0.5) ** 2,
x_var * (1 + (1.0 / q) ** 0.5) ** 2,
)
e_val_lin = np.linspace(e_min, e_max, 1000)
pdf_0 = (
q
/ (2 * np.pi * x_var * e_val_lin)
* ((e_max - e_val_lin) * (e_val_lin - e_min)) ** 0.5
)
kde = skn.KernelDensity(kernel="gaussian", bandwidth=0.01).fit(
e_val.reshape(-1, 1)
)
# noinspection PyUnresolvedReferences
pdf_1 = np.exp(kde.score_samples(pdf_0.reshape(-1, 1)))
return np.sum((pdf_1 - pdf_0) ** 2)
# noinspection PyTypeChecker
res = sco.minimize(_marchenko, x0=0.5, bounds=((1e-5, 1 - 1e-5),))
var = res["x"][0]
n_facts = e_val.shape[0] - e_val[::-1].searchsorted(
var * (1 + (1.0 / q) ** 0.5) ** 2
)
e_val_ = e_val.copy()
e_val_[n_facts:] = e_val_[n_facts:].sum() / float(e_val_.shape[0] - n_facts)
corr = e_vec @ np.diag(e_val_) @ e_vec.T
corr, _ = cov_to_corr(corr)
covariance = corr_to_cov(corr, std)
self._set_covariance(covariance)
return self