Source code for skfolio.moments.expected_returns._empirical_mu
"""Empirical Expected Returns (Mu) Estimator."""
# Copyright (c) 2023
# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause
# Implementation derived from:
# scikit-learn, Copyright (c) 2007-2010 David Cournapeau, Fabian Pedregosa, Olivier
# Grisel Licensed under BSD 3 clause.
import numpy as np
import numpy.typing as npt
import sklearn.utils.validation as skv
from skfolio.moments.expected_returns._base import BaseMu
[docs]
class EmpiricalMu(BaseMu):
"""Empirical Expected Returns (Mu) estimator.
Estimates the expected returns with the historical mean.
Parameters
----------
window_size : int, optional
Window size. The model is fitted on the last `window_size` observations.
The default (`None`) is to use all the data.
Attributes
----------
mu_ : ndarray of shape (n_assets,)
Estimated expected returns of the assets.
n_features_in_ : int
Number of assets seen during `fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of assets seen during `fit`. Defined only when `X`
has assets names that are all strings.
"""
def __init__(self, window_size: int | None = None):
self.window_size = window_size
[docs]
def fit(self, X: npt.ArrayLike, y=None) -> "EmpiricalMu":
"""Fit the Mu Empirical estimator model.
Parameters
----------
X : array-like of shape (n_observations, n_assets)
Price returns of the assets.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : EmpiricalMu
Fitted estimator.
"""
X = skv.validate_data(self, X)
if self.window_size is not None:
X = X[-self.window_size :]
self.mu_ = np.mean(X, axis=0)
return self