Source code for skfolio.moments.expected_returns._shrunk_mu

"""Shrinkage Expected Returns (Mu) Estimators."""

# Copyright (c) 2023
# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause
# Implementation derived from:
# Riskfolio-Lib, Copyright (c) 2020-2023, Dany Cajas, Licensed under BSD 3 clause.
# scikit-learn, Copyright (c) 2007-2010 David Cournapeau, Fabian Pedregosa, Olivier
# Grisel Licensed under BSD 3 clause.

from enum import auto

import numpy as np
import numpy.typing as npt
import sklearn.utils.metadata_routing as skm
import sklearn.utils.validation as skv

from skfolio.moments.covariance import BaseCovariance, EmpiricalCovariance
from skfolio.moments.expected_returns._base import BaseMu
from skfolio.utils.tools import AutoEnum, check_estimator


[docs] class ShrunkMuMethods(AutoEnum): """Shrinkage methods for the ShrunkMu estimator Parameters ---------- JAMES_STEIN : str James-Stein method BAYES_STEIN : str Bayes-Stein method BODNAR_OKHRIN : str Bodnar Okhrin Parolya method """ JAMES_STEIN = auto() BAYES_STEIN = auto() BODNAR_OKHRIN = auto()
[docs] class ShrunkMu(BaseMu): r"""Shrinkage Expected Returns (Mu) estimator. Estimates the expected returns using shrinkage. The sample mean estimator is unbiased but has high variance. Stein (1955) proved that it's possible to find an estimator with reduced total error using shrinkage by trading a small bias against high variance. The estimator shrinks the sample mean toward a target vector: .. math:: \hat{\mu} = \alpha\bar{\mu}+\beta \mu_{target} with :math:`\bar{\mu}` the sample mean, :math:`\mu_{target}` the target vector and :math:`\alpha` and :math:`\beta` two constants to determine. There are two choices for the target vector :math:`\mu_{target}` : * Grand Mean: constant vector of the mean of the sample mean * Volatility-Weighted Grand Mean: volatility-weighted sample mean And three methods for :math:`\alpha` and :math:`\beta` : * James-Stein * Bayes-Stein * Bodnar Okhrin Parolya Parameters ---------- covariance_estimator : BaseCovariance, optional :ref:`Covariance estimator <covariance_estimator>` used to estimate the covariance in the shrinkage formulae. The default (`None`) is to use :class:`~skfolio.moments.EmpiricalCovariance`. vol_weighted_target : bool, default=False If this is set to True, the target vector :math:`\mu_{target}` is the Volatility-Weighted Grand Mean otherwise it is the Grand Mean. The default is `False`. method : ShrunkMuMethods, default=ShrunkMuMethods.JAMES_STEIN Shrinkage method :class:`ShrunkMuMethods`. Possible values are: * JAMES_STEIN * BAYES_STEIN * BODNAR_OKHRIN The default value is `ShrunkMuMethods.JAMES_STEIN`. Attributes ---------- mu_ : ndarray of shape (n_assets,) Estimated expected returns of the assets. covariance_estimator_ : BaseCovariance Fitted `covariance_estimator`. mu_target_ : ndarray of shape (n_assets,) Target vector :math:`\mu_{target}`. alpha_ : float Alpha value :math:`\alpha`. beta_ : float Beta value :math:`\beta`. n_features_in_ : int Number of assets seen during `fit`. feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of assets seen during `fit`. Defined only when `X` has assets names that are all strings. References ---------- .. [1] "Risk and Asset Allocation", Attilio Meucci (2005) .. [2] "Bayes-stein estimation for portfolio analysis", Philippe Jorion (1986) .. [3] "Optimal shrinkage estimator for high-dimensional mean vector" Bodnar, Okhrin and Parolya (2019) """ covariance_estimator_: BaseCovariance mu_target_: np.ndarray alpha_: float beta_: float def __init__( self, covariance_estimator: BaseCovariance | None = None, vol_weighted_target: bool = False, method: ShrunkMuMethods = ShrunkMuMethods.JAMES_STEIN, ): self.covariance_estimator = covariance_estimator self.vol_weighted_target = vol_weighted_target self.method = method
[docs] def get_metadata_routing(self): # noinspection PyTypeChecker router = skm.MetadataRouter(owner=self.__class__.__name__).add( covariance_estimator=self.covariance_estimator, method_mapping=skm.MethodMapping().add(caller="fit", callee="fit"), ) return router
[docs] def fit(self, X: npt.ArrayLike, y=None, **fit_params) -> "ShrunkMu": """Fit the ShrunkMu estimator model. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : Ignored Not used, present for API consistency by convention. **fit_params : dict Parameters to pass to the underlying estimators. Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : ShrunkMu Fitted estimator. """ routed_params = skm.process_routing(self, "fit", **fit_params) if not isinstance(self.method, ShrunkMuMethods): raise ValueError( "`method` must be of type ShrunkMuMethods, got" f" {type(self.method).__name__}" ) # fitting estimators self.covariance_estimator_ = check_estimator( self.covariance_estimator, default=EmpiricalCovariance(), check_type=BaseCovariance, ) # noinspection PyArgumentList self.covariance_estimator_.fit(X, y, **routed_params.covariance_estimator.fit) # we validate and convert to numpy after all models have been fitted to keep # features names information. X = skv.validate_data(self, X) n_observations, n_assets = X.shape covariance = self.covariance_estimator_.covariance_ sample_mu = np.mean(X, axis=0) cov_inv = None # Calculate target vector if self.vol_weighted_target: cov_inv = np.linalg.inv(covariance) self.mu_target_ = np.sum(cov_inv, axis=1) @ sample_mu / np.sum(cov_inv) else: self.mu_target_ = np.mean(sample_mu) self.mu_target_ *= np.ones(n_assets) # Calculate Estimators match self.method: case ShrunkMuMethods.JAMES_STEIN: eigenvalues = np.linalg.eigvals(covariance) self.beta_ = ( (np.sum(eigenvalues) - 2 * np.max(eigenvalues)) / np.sum((sample_mu - self.mu_target_) ** 2) / n_observations ) self.alpha_ = 1 - self.beta_ case ShrunkMuMethods.BAYES_STEIN: if cov_inv is None: cov_inv = np.linalg.inv(covariance) self.beta_ = (n_assets + 2) / ( n_observations * (sample_mu - self.mu_target_).T @ cov_inv @ (sample_mu - self.mu_target_) + (n_assets + 2) ) self.alpha_ = 1 - self.beta_ case ShrunkMuMethods.BODNAR_OKHRIN: if cov_inv is None: cov_inv = np.linalg.inv(covariance) u = sample_mu.T @ cov_inv @ sample_mu v = sample_mu.T @ cov_inv @ self.mu_target_ w = self.mu_target_.T @ cov_inv @ self.mu_target_ self.alpha_ = ( (u - n_assets / (n_observations - n_assets)) * w - v**2 ) / (u * w - v**2) self.beta_ = (1 - self.alpha_) * v / u case _: raise ValueError(f"method {self.method} is not valid") self.mu_ = self.alpha_ * sample_mu + self.beta_ * self.mu_target_ return self