Source code for skfolio.moments.expected_returns._shrunk_mu
"""Shrinkage Expected Returns (Mu) Estimators."""
# Copyright (c) 2023
# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause
# Implementation derived from:
# Riskfolio-Lib, Copyright (c) 2020-2023, Dany Cajas, Licensed under BSD 3 clause.
# scikit-learn, Copyright (c) 2007-2010 David Cournapeau, Fabian Pedregosa, Olivier
# Grisel Licensed under BSD 3 clause.
from enum import auto
import numpy as np
import numpy.typing as npt
import sklearn.utils.metadata_routing as skm
import sklearn.utils.validation as skv
from skfolio.moments.covariance import BaseCovariance, EmpiricalCovariance
from skfolio.moments.expected_returns._base import BaseMu
from skfolio.utils.tools import AutoEnum, check_estimator
[docs]
class ShrunkMuMethods(AutoEnum):
"""Shrinkage methods for the ShrunkMu estimator
Parameters
----------
JAMES_STEIN : str
James-Stein method
BAYES_STEIN : str
Bayes-Stein method
BODNAR_OKHRIN : str
Bodnar Okhrin Parolya method
"""
JAMES_STEIN = auto()
BAYES_STEIN = auto()
BODNAR_OKHRIN = auto()
[docs]
class ShrunkMu(BaseMu):
r"""Shrinkage Expected Returns (Mu) estimator.
Estimates the expected returns using shrinkage.
The sample mean estimator is unbiased but has high variance.
Stein (1955) proved that it's possible to find an estimator with reduced total
error using shrinkage by trading a small bias against high variance.
The estimator shrinks the sample mean toward a target vector:
.. math:: \hat{\mu} = \alpha\bar{\mu}+\beta \mu_{target}
with :math:`\bar{\mu}` the sample mean, :math:`\mu_{target}` the target vector
and :math:`\alpha` and :math:`\beta` two constants to determine.
There are two choices for the target vector :math:`\mu_{target}` :
* Grand Mean: constant vector of the mean of the sample mean
* Volatility-Weighted Grand Mean: volatility-weighted sample mean
And three methods for :math:`\alpha` and :math:`\beta` :
* James-Stein
* Bayes-Stein
* Bodnar Okhrin Parolya
Parameters
----------
covariance_estimator : BaseCovariance, optional
:ref:`Covariance estimator <covariance_estimator>` used to estimate the
covariance in the shrinkage formulae.
The default (`None`) is to use :class:`~skfolio.moments.EmpiricalCovariance`.
vol_weighted_target : bool, default=False
If this is set to True, the target vector :math:`\mu_{target}` is the
Volatility-Weighted Grand Mean otherwise it is the Grand Mean.
The default is `False`.
method : ShrunkMuMethods, default=ShrunkMuMethods.JAMES_STEIN
Shrinkage method :class:`ShrunkMuMethods`.
Possible values are:
* JAMES_STEIN
* BAYES_STEIN
* BODNAR_OKHRIN
The default value is `ShrunkMuMethods.JAMES_STEIN`.
Attributes
----------
mu_ : ndarray of shape (n_assets,)
Estimated expected returns of the assets.
covariance_estimator_ : BaseCovariance
Fitted `covariance_estimator`.
mu_target_ : ndarray of shape (n_assets,)
Target vector :math:`\mu_{target}`.
alpha_ : float
Alpha value :math:`\alpha`.
beta_ : float
Beta value :math:`\beta`.
n_features_in_ : int
Number of assets seen during `fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of assets seen during `fit`. Defined only when `X`
has assets names that are all strings.
References
----------
.. [1] "Risk and Asset Allocation",
Attilio Meucci (2005)
.. [2] "Bayes-stein estimation for portfolio analysis",
Philippe Jorion (1986)
.. [3] "Optimal shrinkage estimator for high-dimensional mean vector"
Bodnar, Okhrin and Parolya (2019)
"""
covariance_estimator_: BaseCovariance
mu_target_: np.ndarray
alpha_: float
beta_: float
def __init__(
self,
covariance_estimator: BaseCovariance | None = None,
vol_weighted_target: bool = False,
method: ShrunkMuMethods = ShrunkMuMethods.JAMES_STEIN,
):
self.covariance_estimator = covariance_estimator
self.vol_weighted_target = vol_weighted_target
self.method = method
[docs]
def fit(self, X: npt.ArrayLike, y=None, **fit_params) -> "ShrunkMu":
"""Fit the ShrunkMu estimator model.
Parameters
----------
X : array-like of shape (n_observations, n_assets)
Price returns of the assets.
y : Ignored
Not used, present for API consistency by convention.
**fit_params : dict
Parameters to pass to the underlying estimators.
Only available if `enable_metadata_routing=True`, which can be
set by using ``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : ShrunkMu
Fitted estimator.
"""
routed_params = skm.process_routing(self, "fit", **fit_params)
if not isinstance(self.method, ShrunkMuMethods):
raise ValueError(
"`method` must be of type ShrunkMuMethods, got"
f" {type(self.method).__name__}"
)
# fitting estimators
self.covariance_estimator_ = check_estimator(
self.covariance_estimator,
default=EmpiricalCovariance(),
check_type=BaseCovariance,
)
# noinspection PyArgumentList
self.covariance_estimator_.fit(X, y, **routed_params.covariance_estimator.fit)
# we validate and convert to numpy after all models have been fitted to keep
# features names information.
X = skv.validate_data(self, X)
n_observations, n_assets = X.shape
covariance = self.covariance_estimator_.covariance_
sample_mu = np.mean(X, axis=0)
cov_inv = None
# Calculate target vector
if self.vol_weighted_target:
cov_inv = np.linalg.inv(covariance)
self.mu_target_ = np.sum(cov_inv, axis=1) @ sample_mu / np.sum(cov_inv)
else:
self.mu_target_ = np.mean(sample_mu)
self.mu_target_ *= np.ones(n_assets)
# Calculate Estimators
match self.method:
case ShrunkMuMethods.JAMES_STEIN:
eigenvalues = np.linalg.eigvals(covariance)
self.beta_ = (
(np.sum(eigenvalues) - 2 * np.max(eigenvalues))
/ np.sum((sample_mu - self.mu_target_) ** 2)
/ n_observations
)
self.alpha_ = 1 - self.beta_
case ShrunkMuMethods.BAYES_STEIN:
if cov_inv is None:
cov_inv = np.linalg.inv(covariance)
self.beta_ = (n_assets + 2) / (
n_observations
* (sample_mu - self.mu_target_).T
@ cov_inv
@ (sample_mu - self.mu_target_)
+ (n_assets + 2)
)
self.alpha_ = 1 - self.beta_
case ShrunkMuMethods.BODNAR_OKHRIN:
if cov_inv is None:
cov_inv = np.linalg.inv(covariance)
u = sample_mu.T @ cov_inv @ sample_mu
v = sample_mu.T @ cov_inv @ self.mu_target_
w = self.mu_target_.T @ cov_inv @ self.mu_target_
self.alpha_ = (
(u - n_assets / (n_observations - n_assets)) * w - v**2
) / (u * w - v**2)
self.beta_ = (1 - self.alpha_) * v / u
case _:
raise ValueError(f"method {self.method} is not valid")
self.mu_ = self.alpha_ * sample_mu + self.beta_ * self.mu_target_
return self