Source code for skfolio.uncertainty_set._empirical

"""Empirical Uncertainty Set estimators."""

# Copyright (c) 2023
# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause
# Implementation derived from:
# Riskfolio-Lib, Copyright (c) 2020-2023, Dany Cajas, Licensed under BSD 3 clause.
# scikit-learn, Copyright (c) 2007-2010 David Cournapeau, Fabian Pedregosa, Olivier
# Grisel Licensed under BSD 3 clause.

import numpy as np
import numpy.typing as npt
import scipy.stats as st
import sklearn.utils.metadata_routing as skm

from skfolio.prior import BasePrior, EmpiricalPrior
from skfolio.uncertainty_set._base import (
    BaseCovarianceUncertaintySet,
    BaseMuUncertaintySet,
    UncertaintySet,
)
from skfolio.utils.stats import commutation_matrix
from skfolio.utils.tools import check_estimator


[docs] class EmpiricalMuUncertaintySet(BaseMuUncertaintySet): r"""Empirical Mu Uncertainty Set. Compute the expected returns ellipsoidal uncertainty set [1]_: .. math:: U_{\mu}=\left\{\mu\,|\left(\mu-\hat{\mu}\right)S^{-1}\left(\mu-\hat{\mu}\right)^{T}\leq\kappa^{2}\right\} Under the assumption that :math:`\Sigma` is given, the distribution of the sample estimator :math:`\hat{\mu}` based on an i.i.d. sample :math:`R_{t}\sim N(\mu, \Sigma), t=1,...,T` is given by :math:`\hat{\mu}\sim N(\mu, \frac{1}{T}\Sigma)`. The size of the ellipsoid :math:`\kappa` (confidence region), is computed using: .. math:: \kappa^2 = \chi^2_{n\_assets} (\beta) with :math:`\chi^2_{n\_assets}(\beta)` the inverse cumulative distribution function of the chi-squared distribution with `n_assets` degrees of freedom at the :math:`\beta` confidence level. The Shape of the ellipsoid :math:`S` is computed using: .. math:: S = \frac{1}{T}\Sigma with the option to force the non-diagonal elements of the covariance matrix to zero. Parameters ---------- prior_estimator : BasePrior, optional The :ref:`prior estimator <prior>` used to estimate the assets covariance matrix. The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`. confidence_level : float , default=0.95 Confidence level :math:`\beta` of the inverse cumulative distribution function of the chi-squared distribution. The default value is `0.95`. diagonal : bool, default=True If this is set to True, the non-diagonal elements of the covariance matrix are set to zero. Attributes ---------- uncertainty_set_ : UncertaintySet Mu Uncertainty set :class:`~skfolio.uncertainty_set.UncertaintySet`. prior_estimator_ : BasePrior Fitted `prior_estimator`. References ---------- .. [1] "Robustness properties of mean-variance portfolios", Optimization: A Journal of Mathematical Programming and Operations Research, Schöttle & Werner (2009). """ def __init__( self, prior_estimator: BasePrior | None = None, confidence_level: float = 0.95, diagonal: bool = True, ): super().__init__(prior_estimator=prior_estimator) self.confidence_level = confidence_level self.diagonal = diagonal
[docs] def fit( self, X: npt.ArrayLike, y: npt.ArrayLike | None = None, **fit_params ) -> "EmpiricalMuUncertaintySet": """Fit the Empirical Mu Uncertainty set estimator. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : array-like of shape (n_observations, n_factors), optional Price returns of factors. The default is `None`. **fit_params : dict Parameters to pass to the underlying estimators. Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : EmpiricalMuUncertaintySet Fitted estimator. """ routed_params = skm.process_routing(self, "fit", **fit_params) self.prior_estimator_ = check_estimator( self.prior_estimator, default=EmpiricalPrior(), check_type=BasePrior, ) # fitting estimators self.prior_estimator_.fit(X, y, **routed_params.prior_estimator.fit) prior_model = self.prior_estimator_.prior_model_ n_observations, n_assets = prior_model.returns.shape k = np.sqrt(st.chi2.ppf(q=self.confidence_level, df=n_assets)) sigma = prior_model.covariance / n_observations if self.diagonal: sigma = np.diag(np.diag(sigma)) self.uncertainty_set_ = UncertaintySet(k=k, sigma=sigma) return self
[docs] class EmpiricalCovarianceUncertaintySet(BaseCovarianceUncertaintySet): r"""Empirical Covariance Uncertainty set. Compute the covariance ellipsoidal uncertainty set [1]_: .. math:: U_{\Sigma}=\left\{\Sigma\,|\left(\text{vec}(\Sigma)-\text{vec}(\hat{\Sigma})\right)S^{-1}\left(\text{vec}(\Sigma)-\text{vec}(\hat{\Sigma})\right)^{T}\leq k^{2}\,,\,\Sigma\succeq 0\right\} We consider the Wishart distribution for the covariance matrix: .. math:: \hat{\Sigma}\sim W(\frac{1}{T-1}\Sigma, T-1) The size of the ellipsoid :math:`\kappa` (confidence region), is computed using: .. math:: \kappa^2 = \chi^2_{n\_assets^2} (\beta) with :math:`\chi^2_{n\_assets^2}(\beta)` the inverse cumulative distribution function of the chi-squared distribution with `n_assets` degrees of freedom at the :math:`\beta` confidence level. The Shape of the ellipsoid :math:`S` is based on a closed form solution of the covariance matrix of the Wishart distributed random variable by using the vector notation :math:`vec(x)`: .. math:: Cov[vec(\hat{\Sigma})]=\frac{1}{T-1}(I_{n^2} + K_{nn})(\Sigma \otimes \Sigma) with :math:`K_{nn}` denoting a commutation matrix and :math:`\otimes` representing the Kronecker product. Parameters ---------- prior_estimator : BasePrior, optional The :ref:`prior estimator <prior>` used to estimate the assets covariance matrix. The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`. confidence_level : float , default=0.95 Confidence level :math:`\beta` of the inverse cumulative distribution function of the chi-squared distribution. The default value is `0.95`. diagonal : bool, default=True If this is set to True, the non-diagonal elements of the covariance matrix are set to zero. Attributes ---------- uncertainty_set_ : UncertaintySet Covariance Uncertainty set :class:`~skfolio.uncertainty_set.UncertaintySet`. prior_estimator_ : BasePrior Fitted `prior_estimator`. References ---------- .. [1] "Robustness properties of mean-variance portfolios", Optimization: A Journal of Mathematical Programming and Operations Research, Schöttle & Werner (2009). """ def __init__( self, prior_estimator: BasePrior | None = None, confidence_level: float = 0.95, diagonal: bool = True, ): super().__init__(prior_estimator=prior_estimator) self.confidence_level = confidence_level self.diagonal = diagonal
[docs] def fit( self, X: npt.ArrayLike, y: npt.ArrayLike | None = None, **fit_params ) -> "EmpiricalCovarianceUncertaintySet": """Fit the Empirical Covariance Uncertainty set estimator. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : array-like of shape (n_observations, n_factors), optional Price returns of factors. The default is `None`. **fit_params : dict Parameters to pass to the underlying estimators. Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : EmpiricalCovarianceUncertaintySet Fitted estimator. """ routed_params = skm.process_routing(self, "fit", **fit_params) self.prior_estimator_ = check_estimator( self.prior_estimator, default=EmpiricalPrior(), check_type=BasePrior, ) # fitting estimators self.prior_estimator_.fit(X, y, **routed_params.prior_estimator.fit) prior_model = self.prior_estimator_.prior_model_ n_observations, n_assets = prior_model.returns.shape k = np.sqrt(st.chi2.ppf(q=self.confidence_level, df=n_assets**2)) sigma = prior_model.covariance / n_observations if self.diagonal: sigma = np.diag(np.diag(sigma)) sigma = np.diag( np.diag( n_observations * (np.identity(n_assets**2) + commutation_matrix(sigma)) @ np.kron(sigma, sigma) ) ) self.uncertainty_set_ = UncertaintySet(k=k, sigma=sigma) return self