Source code for skfolio.optimization.naive._naive

"""Naive estimators."""

# Author: Hugo Delatte <delatte.hugo@gmail.com>
# License: BSD 3 clause

import numpy as np
import numpy.typing as npt
import sklearn.utils.metadata_routing as skm
import sklearn.utils.validation as skv

from skfolio.optimization._base import BaseOptimization
from skfolio.prior import BasePrior, EmpiricalPrior
from skfolio.utils.stats import rand_weights_dirichlet
from skfolio.utils.tools import check_estimator


[docs] class InverseVolatility(BaseOptimization): """Inverse Volatility estimator. Each asset weight is computed using the inverse of its volatility and rescaled to have a sum of weights equal to one. The assets volatilities are derived from the prior estimator's covariance matrix. Parameters ---------- prior_estimator : BasePrior, optional :ref:`Prior estimator <prior>`. The prior estimator is used to estimate the :class:`~skfolio.prior.PriorModel` containing the estimation of assets expected returns, covariance matrix, returns and Cholesky decomposition of the covariance. The default (`None`) is to use :class:`~skfolio.prior.EmpiricalPrior`. portfolio_params : dict, optional Portfolio parameters passed to the portfolio evaluated by the `predict` and `score` methods. If not provided, the `name`, `transaction_costs`, `management_fees`, `previous_weights` and `risk_free_rate` are copied from the optimization model and passed to the portfolio. Attributes ---------- weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets) Weights of the assets. prior_estimator_ : BasePrior Fitted `prior_estimator`. """ prior_estimator_: BasePrior def __init__( self, prior_estimator: BasePrior | None = None, portfolio_params: dict | None = None, ): super().__init__(portfolio_params=portfolio_params) self.prior_estimator = prior_estimator
[docs] def get_metadata_routing(self): # noinspection PyTypeChecker router = skm.MetadataRouter(owner=self.__class__.__name__).add( prior_estimator=self.prior_estimator, method_mapping=skm.MethodMapping().add(caller="fit", callee="fit"), ) return router
[docs] def fit( self, X: npt.ArrayLike, y: npt.ArrayLike | None = None, **fit_params ) -> "InverseVolatility": """Fit the Inverse Volatility estimator. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : array-like of shape (n_observations, n_targets), optional Price returns of factors or a target benchmark. The default is `None`. **fit_params : dict Parameters to pass to the underlying estimators. Only available if `enable_metadata_routing=True`, which can be set by using ``sklearn.set_config(enable_metadata_routing=True)``. See :ref:`Metadata Routing User Guide <metadata_routing>` for more details. Returns ------- self : InverseVolatility Fitted estimator. """ routed_params = skm.process_routing(self, "fit", **fit_params) # fitting prior estimator self.prior_estimator_ = check_estimator( self.prior_estimator, default=EmpiricalPrior(), check_type=BasePrior, ) self.prior_estimator_.fit(X, y, **routed_params.prior_estimator.fit) covariance = self.prior_estimator_.prior_model_.covariance w = 1 / np.sqrt(np.diag(covariance)) self.weights_ = w / sum(w) return self
[docs] class EqualWeighted(BaseOptimization): """Equally Weighted estimator. Each asset weight is equal to `1/n_assets`. Parameters ---------- portfolio_params : dict, optional Portfolio parameters passed to the portfolio evaluated by the `predict` and `score` methods. If not provided, the `name`, `transaction_costs`, `management_fees`, `previous_weights` and `risk_free_rate` are copied from the optimization model and passed to the portfolio. Attributes ---------- weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets) Weights of the assets. """ def __init__(self, portfolio_params: dict | None = None): super().__init__(portfolio_params=portfolio_params)
[docs] def fit(self, X: npt.ArrayLike, y=None) -> "EqualWeighted": """Fit the Equal Weighted estimator. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : Ignored Not used, present for API consistency by convention. Returns ------- self : EqualWeighted Fitted estimator. """ X = skv.validate_data(self, X) n_assets = X.shape[1] self.weights_ = np.ones(n_assets) / n_assets return self
[docs] class Random(BaseOptimization): """Random weight estimator. The assets weight are drawn from a Dirichlet distribution and sum to one. Parameters ---------- portfolio_params : dict, optional Portfolio parameters passed to the portfolio evaluated by the `predict` and `score` methods. If not provided, the `name`, `transaction_costs`, `management_fees`, `previous_weights` and `risk_free_rate` are copied from the optimization model and passed to the portfolio. Attributes ---------- weights_ : ndarray of shape (n_assets,) or (n_optimizations, n_assets) Weights of the assets. """ def __init__(self, portfolio_params: dict | None = None): super().__init__(portfolio_params=portfolio_params)
[docs] def fit(self, X: npt.ArrayLike, y=None): """Fit the Random Weighted estimator. Parameters ---------- X : array-like of shape (n_observations, n_assets) Price returns of the assets. y : Ignored Not used, present for API consistency by convention. Returns ------- self : EqualWeighted Fitted estimator. """ X = skv.validate_data(self, X) n_assets = X.shape[1] self.weights_ = rand_weights_dirichlet(n=n_assets) return self