skfolio.optimization
.InverseVolatility#
- class skfolio.optimization.InverseVolatility(prior_estimator=None, portfolio_params=None)[source]#
Inverse Volatility estimator.
Each asset weight is computed using the inverse of its volatility and rescaled to have a sum of weights equal to one. The assets volatilities are derived from the prior estimator’s covariance matrix.
- Parameters:
- prior_estimatorBasePrior, optional
Prior estimator. The prior estimator is used to estimate the
PriorModel
containing the estimation of assets expected returns, covariance matrix, returns and Cholesky decomposition of the covariance. The default (None
) is to useEmpiricalPrior
.- portfolio_paramsdict, optional
Portfolio parameters passed to the portfolio evaluated by the
predict
andscore
methods. If not provided, thename
,transaction_costs
,management_fees
,previous_weights
andrisk_free_rate
are copied from the optimization model and passed to the portfolio.
- Attributes:
- weights_ndarray of shape (n_assets,) or (n_optimizations, n_assets)
Weights of the assets.
- prior_estimator_BasePrior
Fitted
prior_estimator
.
Methods
fit
(X[, y])Fit the Inverse Volatility estimator.
fit_predict
(X)Perform
fit
onX
and returns the predictedPortfolio
orPopulation
ofPortfolio
onX
based on the fittedweights
.Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict the
Portfolio
orPopulation
ofPortfolio
onX
based on the fitted weights.score
(X[, y])Prediction score.
set_params
(**params)Set the parameters of this estimator.
- fit(X, y=None, **fit_params)[source]#
Fit the Inverse Volatility estimator.
- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- yarray-like of shape (n_observations, n_targets), optional
Price returns of factors or a target benchmark. The default is
None
.- **fit_paramsdict
Parameters to pass to the underlying estimators. Only available if
enable_metadata_routing=True
, which can be set by usingsklearn.set_config(enable_metadata_routing=True)
. See Metadata Routing User Guide for more details.
- Returns:
- selfInverseVolatility
Fitted estimator.
- fit_predict(X)#
Perform
fit
onX
and returns the predictedPortfolio
orPopulation
ofPortfolio
onX
based on the fittedweights
. For factor models, usefit(X, y)
thenpredict(X)
separately.- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- Returns:
- predictionPortfolio | Population
Portfolio
orPopulation
ofPortfolio
estimated onX
based on the fittedweights
.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict(X)#
Predict the
Portfolio
orPopulation
ofPortfolio
onX
based on the fitted weights.Optimization estimators can return a 1D or a 2D array of
weights
. For a 1D array, the prediction returns aPortfolio
. For a 2D array, the prediction returns aPopulation
ofPortfolio
.If
name
is not provided in the portfolio arguments, we use the first 500 characters of the estimator name.- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- Returns:
- predictionPortfolio | Population
Portfolio
orPopulation
ofPortfolio
estimated onX
based on the fittedweights
.
- score(X, y=None)#
Prediction score. If the prediction is a single
Portfolio
, the score is the Sharpe Ratio. If the prediction is aPopulation
ofPortfolio
, the score is the mean of all the portfolios Sharpe Ratios in the population.- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- yIgnored
Not used, present here for API consistency by convention.
- Returns:
- scorefloat
The Sharpe Ratio of the portfolio if the prediction is a single
Portfolio
or the mean of all the portfolios Sharpe Ratios if the prediction is aPopulation
ofPortfolio
.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.