skfolio.optimization.InverseVolatility#

class skfolio.optimization.InverseVolatility(prior_estimator=None, portfolio_params=None)[source]#

Inverse Volatility estimator.

Each asset weight is computed using the inverse of its volatility and rescaled to have a sum of weights equal to one. The assets volatilities are derived from the prior estimator’s covariance matrix.

Parameters:
prior_estimatorBasePrior, optional

Prior estimator. The prior estimator is used to estimate the PriorModel containing the estimation of assets expected returns, covariance matrix, returns and Cholesky decomposition of the covariance. The default (None) is to use EmpiricalPrior.

portfolio_paramsdict, optional

Portfolio parameters passed to the portfolio evaluated by the predict and score methods. If not provided, the name, transaction_costs, management_fees, previous_weights and risk_free_rate are copied from the optimization model and passed to the portfolio.

Attributes:
weights_ndarray of shape (n_assets,) or (n_optimizations, n_assets)

Weights of the assets.

prior_estimator_BasePrior

Fitted prior_estimator.

Methods

fit(X[, y])

Fit the Inverse Volatility estimator.

fit_predict(X)

Perform fit on X and returns the predicted Portfolio or Population of Portfolio on X based on the fitted weights.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict the Portfolio or Population of Portfolio on X based on the fitted weights.

score(X[, y])

Prediction score.

set_params(**params)

Set the parameters of this estimator.

fit(X, y=None, **fit_params)[source]#

Fit the Inverse Volatility estimator.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

yarray-like of shape (n_observations, n_targets), optional

Price returns of factors or a target benchmark. The default is None.

**fit_paramsdict

Parameters to pass to the underlying estimators. Only available if enable_metadata_routing=True, which can be set by using sklearn.set_config(enable_metadata_routing=True). See Metadata Routing User Guide for more details.

Returns:
selfInverseVolatility

Fitted estimator.

fit_predict(X)#

Perform fit on X and returns the predicted Portfolio or Population of Portfolio on X based on the fitted weights. For factor models, use fit(X, y) then predict(X) separately.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

Returns:
predictionPortfolio | Population

Portfolio or Population of Portfolio estimated on X based on the fitted weights.

get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

predict(X)#

Predict the Portfolio or Population of Portfolio on X based on the fitted weights.

Optimization estimators can return a 1D or a 2D array of weights. For a 1D array, the prediction returns a Portfolio. For a 2D array, the prediction returns a Population of Portfolio.

If name is not provided in the portfolio arguments, we use the first 500 characters of the estimator name.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

Returns:
predictionPortfolio | Population

Portfolio or Population of Portfolio estimated on X based on the fitted weights.

score(X, y=None)#

Prediction score. If the prediction is a single Portfolio, the score is the Sharpe Ratio. If the prediction is a Population of Portfolio, the score is the mean of all the portfolios Sharpe Ratios in the population.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

yIgnored

Not used, present here for API consistency by convention.

Returns:
scorefloat

The Sharpe Ratio of the portfolio if the prediction is a single Portfolio or the mean of all the portfolios Sharpe Ratios if the prediction is a Population of Portfolio.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.