skfolio.prior
.LoadingMatrixRegression#
- class skfolio.prior.LoadingMatrixRegression(linear_regressor=None, n_jobs=None)[source]#
Loading Matrix Regression estimator.
Estimate the loading matrix by fitting one linear regressor per asset.
- Parameters:
- linear_regressorBaseEstimator, optional
Linear regressor used to fit the factors on each asset separately. The default (
None
) is to useLassoCV(fit_intercept=False)
.- n_jobsint, optional
The number of jobs to run in parallel.
When individual estimators are fast to train or predict, using
n_jobs > 1
can result in slower performance due to the parallelism overhead.The value
-1
means using all processors. The default (None
) means 1 unless in ajoblib.parallel_backend
context.
- Attributes:
- loading_matrix_ndarray of shape (n_assets, n_factors)
The loading matrix.
- intercepts_: ndarray of shape (n_assets,)
The intercepts.
- multi_output_regressor_: MultiOutputRegressor
Fitted
sklearn.multioutput.MultiOutputRegressor
Methods
fit
(X, y, **fit_params)Fit the Loading Matrix Regression Estimator.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
- fit(X, y, **fit_params)[source]#
Fit the Loading Matrix Regression Estimator.
- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- yarray-like of shape (n_observations, n_factors)
Price returns of the factors.
- **fit_paramsdict
Parameters to pass to the underlying estimators. Only available if
enable_metadata_routing=True
, which can be set by usingsklearn.set_config(enable_metadata_routing=True)
. See Metadata Routing User Guide for more details.
- Returns:
- selfLoadingMatrixRegression
Fitted estimator.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.