skfolio.distance
.BaseDistance#
- class skfolio.distance.BaseDistance[source]#
Base class for all distance estimators in skfolio.
- Attributes:
- codependence_ndarray of shape (n_assets, n_assets)
Codependence matrix.
- distance_ndarray of shape (n_assets, n_assets)
Distance matrix.
Notes
All estimators should specify all the parameters that can be set at the class level in their
__init__
as explicit keyword arguments (no*args
or**kwargs
).Methods
fit
(X[, y])Fit the Distance estimator.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
- abstract fit(X, y=None)[source]#
Fit the Distance estimator.
- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- yIgnored
Not used, present for API consistency by convention.
- Returns:
- selfBaseDistance
Fitted estimator.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.