skfolio.distance.BaseDistance#

class skfolio.distance.BaseDistance[source]#

Base class for all distance estimators in skfolio.

Attributes:
codependence_ndarray of shape (n_assets, n_assets)

Codependence matrix.

distance_ndarray of shape (n_assets, n_assets)

Distance matrix.

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit keyword arguments (no *args or **kwargs).

Methods

fit(X[, y])

Fit the Distance estimator.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

abstract fit(X, y=None)[source]#

Fit the Distance estimator.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

yIgnored

Not used, present for API consistency by convention.

Returns:
selfBaseDistance

Fitted estimator.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.