skfolio.utils.stats
.n_bins_freedman#
- skfolio.utils.stats.n_bins_freedman(x)[source]#
Compute the optimal histogram bin size using the Freedman-Diaconis rule [1].
- Parameters:
- xndarray of shape (n_observations,)
The input array.
- Returns:
- n_binsint
The optimal bin size.
References
[1]“On the histogram as a density estimator: L2 theory”. Freedman & Diaconis (1981).