skfolio.measures
.value_at_risk#
- skfolio.measures.value_at_risk(returns, beta=0.95, sample_weight=None)[source]#
Compute the historical value at risk (VaR). The VaR is the maximum loss at a given confidence level (beta).
- Parameters:
- returnsndarray of shape (n_observations,) or (n_observations, n_assets)
Array of return values.
- betafloat, default=0.95
The VaR confidence level (return on the worst (1-beta)% observation).
- sample_weightndarray of shape (n_observations,), optional
Sample weights for each observation. If None, equal weights are assumed.
- Returns:
- valuefloat or ndarray of shape (n_assets,)
Value at Risk. If
returns
is a 1D-array, the result is a float. Ifreturns
is a 2D-array, the result is a ndarray of shape (n_assets,).