skfolio.optimization.HierarchicalRiskParity#

class skfolio.optimization.HierarchicalRiskParity(risk_measure=Variance, prior_estimator=None, distance_estimator=None, hierarchical_clustering_estimator=None, min_weights=0.0, max_weights=1.0, transaction_costs=0.0, management_fees=0.0, previous_weights=None, portfolio_params=None)[source]#

Hierarchical Risk Parity estimator.

Hierarchical Risk Parity is a portfolio optimization method developed by Marcos Lopez de Prado [2].

This algorithm uses a distance matrix to compute hierarchical clusters using the Hierarchical Tree Clustering algorithm. It then employs seriation to rearrange the assets in the dendrogram, minimizing the distance between leafs.

The final step is the recursive bisection where each cluster is split between two sub-clusters by starting with the topmost cluster and traversing in a top-down manner. For each sub-cluster, we compute the total cluster risk of an inverse-risk allocation. A weighting factor is then computed from these two sub-cluster risks, which is used to update the cluster weight.

Note

The original paper uses the variance as the risk measure and the single-linkage method for the Hierarchical Tree Clustering algorithm. Here we generalize it to multiple risk measures and linkage methods. The default linkage method is set to the Ward variance minimization algorithm, which is more stable and has better properties than the single-linkage method [4].

Parameters:
risk_measureRiskMeasure or ExtraRiskMeasure, default=RiskMeasure.VARIANCE

RiskMeasure or ExtraRiskMeasure of the optimization. Can be any of:

  • MEAN_ABSOLUTE_DEVIATION

  • FIRST_LOWER_PARTIAL_MOMENT

  • VARIANCE

  • SEMI_VARIANCE

  • CVAR

  • EVAR

  • WORST_REALIZATION

  • CDAR

  • MAX_DRAWDOWN

  • AVERAGE_DRAWDOWN

  • EDAR

  • ULCER_INDEX

  • GINI_MEAN_DIFFERENCE_RATIO

  • VALUE_AT_RISK

  • DRAWDOWN_AT_RISK

  • ENTROPIC_RISK_MEASURE

  • FOURTH_CENTRAL_MOMENT

  • FOURTH_LOWER_PARTIAL_MOMENT

The default is RiskMeasure.VARIANCE.

prior_estimatorBasePrior, optional

Prior estimator. The prior estimator is used to estimate the PriorModel containing the estimation of assets expected returns, covariance matrix and returns. The moments and returns estimations are used for the risk computation and the returns estimation are used by the distance matrix estimator. The default (None) is to use EmpiricalPrior.

distance_estimatorBaseDistance, optional

Distance estimator. The distance estimator is used to estimate the codependence and the distance matrix needed for the computation of the linkage matrix. The default (None) is to use PearsonDistance.

hierarchical_clustering_estimatorHierarchicalClustering, optional

Hierarchical Clustering estimator. The hierarchical clustering estimator is used to compute the linkage matrix and the hierarchical clustering of the assets based on the distance matrix. The default (None) is to use HierarchicalClustering.

min_weightsfloat | dict[str, float] | array-like of shape (n_assets, ), default=0.0

Minimum assets weights (weights lower bounds). Negative weights are not allowed. If a float is provided, it is applied to each asset. If a dictionary is provided, its (key/value) pair must be the (asset name/asset minium weight) and the input X of the fit methods must be a DataFrame with the assets names in columns. When using a dictionary, assets values that are not provided are assigned a minimum weight of 0.0. The default is 0.0 (no short selling).

Example:

  • min_weights = 0 –> long only portfolio (no short selling).

  • min_weights = None –> no lower bound (same as -np.Inf).

  • min_weights = {“SX5E”: 0, “SPX”: 0.1}

  • min_weights = [0, 0.1]

max_weightsfloat | dict[str, float] | array-like of shape (n_assets, ), default=1.0

Maximum assets weights (weights upper bounds). Weights above 1.0 are not allowed. If a float is provided, it is applied to each asset. If a dictionary is provided, its (key/value) pair must be the (asset name/asset maximum weight) and the input X of the fit method must be a DataFrame with the assets names in columns. When using a dictionary, assets values that are not provided are assigned a minimum weight of 1.0. The default is 1.0 (each asset is below 100%).

Example:

  • max_weights = 0 –> no long position (short only portfolio).

  • max_weights = 0.5 –> each weight must be below 50%.

  • max_weights = {“SX5E”: 1, “SPX”: 0.25}

  • max_weights = [1, 0.25]

transaction_costsfloat | dict[str, float] | array-like of shape (n_assets, ), default=0.0

Transaction costs of the assets. It is used to add linear transaction costs to the optimization problem:

\[total\_cost = \sum_{i=1}^{N} c_{i} \times |w_{i} - w\_prev_{i}|\]

with \(c_{i}\) the transaction cost of asset i, \(w_{i}\) its weight and \(w\_prev_{i}\) its previous weight (defined in previous_weights). The float \(total\_cost\) is impacting the portfolio expected return in the optimization:

\[expected\_return = \mu^{T} \cdot w - total\_cost\]

with \(\mu\) the vector af assets’ expected returns and \(w\) the vector of assets weights.

If a float is provided, it is applied to each asset. If a dictionary is provided, its (key/value) pair must be the (asset name/asset cost) and the input X of the fit method must be a DataFrame with the assets names in columns. The default value is 0.0.

Warning

Based on the above formula, the periodicity of the transaction costs needs to be homogenous to the periodicity of \(\mu\). For example, if the input X is composed of daily returns, the transaction_costs need to be expressed as daily costs. (See Transaction Costs)

management_feesfloat | dict[str, float] | array-like of shape (n_assets, ), default=0.0

Management fees of the assets. It is used to add linear management fees to the optimization problem:

\[total\_fee = \sum_{i=1}^{N} f_{i} \times w_{i}\]

with \(f_{i}\) the management fee of asset i and \(w_{i}\) its weight. The float \(total\_fee\) is impacting the portfolio expected return in the optimization:

\[expected\_return = \mu^{T} \cdot w - total\_fee\]

with \(\mu\) the vector af assets expected returns and \(w\) the vector of assets weights.

If a float is provided, it is applied to each asset. If a dictionary is provided, its (key/value) pair must be the (asset name/asset fee) and the input X of the fit method must be a DataFrame with the assets names in columns. The default value is 0.0.

Warning

Based on the above formula, the periodicity of the management fees needs to be homogenous to the periodicity of \(\mu\). For example, if the input X is composed of daily returns, the management_fees need to be expressed in daily fees.

Note

Another approach is to directly impact the management fees to the input X in order to express the returns net of fees. However, when estimating the \(\mu\) parameter using for example Shrinkage estimators, this approach would mix a deterministic value with an uncertain one leading to unwanted bias in the management fees.

previous_weightsfloat | dict[str, float] | array-like of shape (n_assets, ), optional

Previous weights of the assets. Previous weights are used to compute the portfolio total cost. If a float is provided, it is applied to each asset. If a dictionary is provided, its (key/value) pair must be the (asset name/asset previous weight) and the input X of the fit method must be a DataFrame with the assets names in columns. The default (None) means no previous weights.

portfolio_paramsdict, optional

Portfolio parameters passed to the portfolio evaluated by the predict and score methods. If not provided, the name, transaction_costs, management_fees, previous_weights and risk_free_rate are copied from the optimization model and passed to the portfolio.

Attributes:
weights_ndarray of shape (n_assets,)

Weights of the assets.

distance_estimator_BaseDistance

Fitted distance_estimator.

hierarchical_clustering_estimator_HierarchicalClustering

Fitted hierarchical_clustering_estimator.

n_features_in_int

Number of assets seen during fit.

feature_names_in_ndarray of shape (n_features_in_,)

Names of assets seen during fit. Defined only when X has assets names that are all strings.

References

[1]

“Building diversified portfolios that outperform out of sample”, The Journal of Portfolio Management, Marcos López de Prado (2016).

[2]

“A robust estimator of the efficient frontier”, SSRN Electronic Journal, Marcos López de Prado (2019).

[3]

“Machine Learning for Asset Managers”, Elements in Quantitative Finance. Cambridge University Press, Marcos López de Prado (2020).

[4]

“A review of two decades of correlations, hierarchies, networks and clustering in financial markets”, Gautier Marti, Frank Nielsen, Mikołaj Bińkowski, Philippe Donnat (2020).

Methods

fit(X[, y])

Fit the Hierarchical Risk Parity Optimization estimator.

fit_predict(X)

Perform fit on X and returns the predicted Portfolio or Population of Portfolio on X based on the fitted weights.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict the Portfolio or Population of Portfolio on X based on the fitted weights.

score(X[, y])

Prediction score.

set_params(**params)

Set the parameters of this estimator.

fit(X, y=None, **fit_params)[source]#

Fit the Hierarchical Risk Parity Optimization estimator.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

yIgnored

Not used, present for API consistency by convention.

Returns:
selfHierarchicalRiskParity

Fitted estimator.

fit_predict(X)#

Perform fit on X and returns the predicted Portfolio or Population of Portfolio on X based on the fitted weights. For factor models, use fit(X, y) then predict(X) separately.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

Returns:
predictionPortfolio | Population

Portfolio or Population of Portfolio estimated on X based on the fitted weights.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

predict(X)#

Predict the Portfolio or Population of Portfolio on X based on the fitted weights.

Optimization estimators can return a 1D or a 2D array of weights. For a 1D array, the prediction returns a Portfolio. For a 2D array, the prediction returns a Population of Portfolio.

If name is not provided in the portfolio arguments, we use the first 500 characters of the estimator name.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

Returns:
predictionPortfolio | Population

Portfolio or Population of Portfolio estimated on X based on the fitted weights.

score(X, y=None)#

Prediction score. If the prediction is a single Portfolio, the score is the Sharpe Ratio. If the prediction is a Population of Portfolio, the score is the mean of all the portfolios Sharpe Ratios in the population.

Parameters:
Xarray-like of shape (n_observations, n_assets)

Price returns of the assets.

yIgnored

Not used, present here for API consistency by convention.

Returns:
scorefloat

The Sharpe Ratio of the portfolio if the prediction is a single Portfolio or the mean of all the portfolios Sharpe Ratios if the prediction is a Population of Portfolio.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.