skfolio.distance.KendallDistance#
- class skfolio.distance.KendallDistance(absolute=False, power=1)[source]#
- Kendall Distance estimator. - The codependence is computed from the Kendall correlation to which is applied a power and/or absolute transformation. This codependence is then used to compute the distance matrix. Some widely used distances are: - Standard angular distance = \(\sqrt{0.5 \times (1 - corr)}\) 
- Absolute angular distance = \(\sqrt{1 - |corr|}\) 
- Squared angular distance = \(\sqrt{1 - corr^2}\) 
 - Parameters:
- absolutebool, default=False
- If this is set to True, the absolute transformation is applied to the correlation matrix. The default is - False.
- powerfloat, default=1
- Exponent of the power transformation applied to the correlation matrix. The default value is - 1.
 
- Attributes:
- codependence_ndarray of shape (n_assets, n_assets)
- Codependence matrix. 
- distance_ndarray of shape (n_assets, n_assets)
- Distance matrix. 
- n_features_in_int
- Number of assets seen during - fit.
- feature_names_in_ndarray of shape (n_features_in_,)
- Names of assets seen during - fit. Defined only when- Xhas assets names that are all strings.
 
 - Methods - fit(X[, y])- Fit the Kendall estimator. - Get metadata routing of this object. - get_params([deep])- Get parameters for this estimator. - set_params(**params)- Set the parameters of this estimator. - References [1]- “Building Diversified Portfolios that Outperform Out-of-Sample”, Lòpez de Prado, Journal of Portfolio Management (2016) - fit(X, y=None)[source]#
- Fit the Kendall estimator. - Parameters:
- Xarray-like of shape (n_observations, n_assets)
- Price returns of the assets. 
- yIgnored
- Not used, present for API consistency by convention. 
 
- Returns:
- selfKendallDistance
- Fitted estimator. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance.