skfolio.moments
.EquilibriumMu#
- class skfolio.moments.EquilibriumMu(risk_aversion=1, weights=None, covariance_estimator=None)[source]#
Equilibrium Expected Returns (Mu) estimator.
The Equilibrium is defined as:
\[risk\_aversion \times \Sigma \cdot w^T\]For Market Cap Equilibrium, the weights are the assets Market Caps. For Equal-weighted Equilibrium, the weights are equal-weighted (1/N).
- Parameters:
- risk_aversionfloat, default=1.0
Risk aversion factor. The default value is
1.0
.- weightsarray-like of shape (n_assets,), optional
Asset weights used to compute the Expected Return Equilibrium. The default is to use the equal-weighted equilibrium (1/N). For a Market Cap weighted equilibrium, you must provide the asset Market Caps.
- covariance_estimatorBaseCovariance, optional
Covariance estimator used to estimate the covariance in the equilibrium formula. The default (
None
) is to useEmpiricalCovariance
.
- Attributes:
- mu_ndarray of shape (n_assets,)
Estimated expected returns of the assets.
- covariance_estimator_BaseCovariance
Fitted
covariance_estimator
.- n_features_in_int
Number of assets seen during
fit
.- feature_names_in_ndarray of shape (
n_features_in_
,) Names of assets seen during
fit
. Defined only whenX
has assets names that are all strings.
Methods
fit
(X[, y])Fit the EquilibriumMu estimator model.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
- fit(X, y=None, **fit_params)[source]#
Fit the EquilibriumMu estimator model.
- Parameters:
- Xarray-like of shape (n_observations, n_assets)
Price returns of the assets.
- yIgnored
Not used, present for API consistency by convention.
- **fit_paramsdict
Parameters to pass to the underlying estimators. Only available if
enable_metadata_routing=True
, which can be set by usingsklearn.set_config(enable_metadata_routing=True)
. See Metadata Routing User Guide for more details.
- Returns:
- selfEquilibriumMu
Fitted estimator.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.