Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Empirical Prior#
This tutorial shows how to use the EmpiricalPrior
estimator in
the MeanRisk
optimization.
A prior estimator fits a PriorModel
containing
the distribution estimate of asset returns. It represents the investor’s prior beliefs
about the model used to estimate such distribution.
The PriorModel
is a dataclass containing:
mu
: Expected returns estimation
covariance
: Covariance matrix estimation
returns
: assets returns estimation
cholesky
: Lower-triangular Cholesky factor of the covariance estimation (optional)
The EmpiricalPrior
estimator simply estimates the PriorModel
from a mu_estimator
and a covariance_estimator
.
In this tutorial we will build a Maximum Sharpe Ratio portfolio using the
EmpiricalPrior
estimator with James-Stein shrinkage for the estimation of expected
returns and Denoising for the estimation of the covariance matrix.
Data#
We load the S&P 500 dataset composed of the daily prices of 20 assets from the SPX Index composition starting from 1990-01-02 up to 2022-12-28:
from plotly.io import show
from sklearn.model_selection import train_test_split
from skfolio import Population, RiskMeasure
from skfolio.datasets import load_sp500_dataset
from skfolio.moments import DenoiseCovariance, ShrunkMu
from skfolio.optimization import MeanRisk, ObjectiveFunction
from skfolio.preprocessing import prices_to_returns
from skfolio.prior import EmpiricalPrior
prices = load_sp500_dataset()
X = prices_to_returns(prices)
X_train, X_test = train_test_split(X, test_size=0.33, shuffle=False)
Model#
We create a Maximum Sharpe Ratio model with shrinkage for the estimation of the expected returns and denoising for the estimation of the covariance matrix:
model = MeanRisk(
risk_measure=RiskMeasure.VARIANCE,
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
prior_estimator=EmpiricalPrior(
mu_estimator=ShrunkMu(), covariance_estimator=DenoiseCovariance()
),
portfolio_params=dict(name="Max Sharpe - ShrunkMu & DenoiseCovariance"),
)
model.fit(X_train)
model.weights_
array([5.29957573e-02, 5.62258515e-07, 2.19431587e-07, 5.78329525e-02,
1.05704853e-01, 6.42635886e-07, 1.25145591e-02, 1.64813030e-01,
3.95272189e-07, 8.40687639e-02, 1.20296728e-06, 1.33374541e-06,
6.51482298e-02, 7.44911613e-02, 7.02327401e-06, 1.27177410e-01,
3.87852705e-02, 6.81199403e-02, 4.34872838e-02, 1.04849409e-01])
Benchmark#
For comparison, we also create a Maximum Sharpe Ratio model using the default moments estimators:
bench = MeanRisk(
risk_measure=RiskMeasure.VARIANCE,
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
portfolio_params=dict(name="Max Sharpe"),
)
bench.fit(X_train)
bench.weights_
array([9.43631399e-02, 1.13184579e-06, 5.04970598e-07, 1.20834667e-01,
3.18126275e-02, 8.57806907e-07, 7.11596802e-04, 1.24104939e-01,
9.49223801e-07, 2.77547553e-02, 1.23409042e-06, 1.37593860e-06,
1.16299875e-01, 5.73516411e-02, 9.58498590e-06, 1.09493919e-01,
8.64761638e-02, 1.83992252e-01, 1.32350165e-02, 3.35537683e-02])
Prediction#
We predict both models on the test set:
pred_model = model.predict(X_test)
pred_bench = bench.predict(X_test)
population = Population([pred_model, pred_bench])
fig = population.plot_cumulative_returns()
show(fig)
Total running time of the script: (0 minutes 0.955 seconds)