Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Risk Parity - Covariance shrinkage#
This tutorial shows how to incorporate covariance shrinkage in the
RiskBudgeting
optimization.
Data#
We load the S&P 500 dataset composed of the daily prices of 20 assets from the S&P 500 Index composition starting from 1990-01-02 up to 2022-12-28:
from plotly.io import show
from sklearn.model_selection import train_test_split
from skfolio import Population, RiskMeasure
from skfolio.datasets import load_sp500_dataset
from skfolio.moments import ShrunkCovariance
from skfolio.optimization import RiskBudgeting
from skfolio.preprocessing import prices_to_returns
from skfolio.prior import EmpiricalPrior
prices = load_sp500_dataset()
X = prices_to_returns(prices)
X_train, X_test = train_test_split(X, test_size=0.33, shuffle=False)
Model#
We create a risk parity model by using ShrunkCovariance
as
the covariance estimator then fit it on the training set:
model = RiskBudgeting(
risk_measure=RiskMeasure.VARIANCE,
prior_estimator=EmpiricalPrior(
covariance_estimator=ShrunkCovariance(shrinkage=0.9)
),
portfolio_params=dict(name="Risk Parity - Covariance Shrinkage"),
)
model.fit(X_train)
model.weights_
array([0.04774364, 0.04370185, 0.04503233, 0.04647732, 0.05284409,
0.04907617, 0.04853045, 0.05373686, 0.04539542, 0.05360766,
0.05178504, 0.05138076, 0.04927193, 0.05375687, 0.05112824,
0.05417384, 0.04755315, 0.0498836 , 0.05199209, 0.0529287 ])
To compare this model, we use a basic risk parity without covariance shrinkage:
bench = RiskBudgeting(
risk_measure=RiskMeasure.VARIANCE,
portfolio_params=dict(name="Risk Parity - Basic"),
)
bench.fit(X_train)
bench.weights_
array([0.04135312, 0.03210895, 0.03372736, 0.03785137, 0.06105376,
0.04432877, 0.04252017, 0.06593358, 0.03451765, 0.06469367,
0.05418761, 0.05209458, 0.04535391, 0.06568343, 0.05103717,
0.06894459, 0.04046582, 0.04667711, 0.05627132, 0.06119604])
Prediction#
We predict the model and the benchmark on the test set:
ptf_model_test = model.predict(X_test)
ptf_bench_test = bench.predict(X_test)
Analysis#
For improved analysis, it’s possible to load both predicted portfolios into a
Population
:
population = Population([ptf_model_test, ptf_bench_test])
Let’s plot each portfolio cumulative returns:
fig = population.plot_cumulative_returns()
show(fig)
Finally, we print a full summary of both strategies evaluated on the test set:
population.summary()
Total running time of the script: (0 minutes 0.973 seconds)