Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Nested Clusters Optimization#
This tutorial introduces the NestedClustersOptimization
optimization.
Nested Clusters Optimization (NCO) is a portfolio optimization method developed by Marcos Lopez de Prado.
It uses a distance matrix to compute clusters using a clustering algorithm ( Hierarchical Tree Clustering, KMeans, etc..). For each cluster, the inner-cluster weights are computed by fitting the inner-estimator on each cluster using the whole training data. Then the outer-cluster weights are computed by training the outer-estimator using out-of-sample estimates of the inner-estimators with cross-validation. Finally, the final assets weights are the dot-product of the inner-weights and outer-weights.
Note
The original paper uses KMeans as the clustering algorithm, minimum Variance for
the inner-estimator and equal-weight for the outer-estimator. Here we generalize
it to all sklearn
and skfolio
clustering algorithm (Hierarchical Tree
Clustering, KMeans, etc.), all portfolio optimizations (Mean-Variance, HRP, etc.)
and risk measures (variance, CVaR, etc.).
To avoid data leakage at the outer-estimator, we use out-of-sample estimates to
fit the outer estimator.
Data#
We load the S&P 500 dataset composed of the daily prices of 20 assets from the S&P 500 Index composition starting from 1990-01-02 up to 2022-12-28:
from plotly.io import show
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from skfolio import Population, RiskMeasure
from skfolio.cluster import HierarchicalClustering, LinkageMethod
from skfolio.datasets import load_sp500_dataset
from skfolio.distance import KendallDistance
from skfolio.optimization import (
EqualWeighted,
MeanRisk,
NestedClustersOptimization,
ObjectiveFunction,
RiskBudgeting,
)
from skfolio.preprocessing import prices_to_returns
prices = load_sp500_dataset()
X = prices_to_returns(prices)
X_train, X_test = train_test_split(X, test_size=0.33, shuffle=False)
Model#
We create a NCO model that maximizes the Sharpe Ratio intra-cluster and uses a CVaR
Risk Parity inter-cluster. By default, the inter-cluster optimization
uses KFolds
out-of-sample estimates of the inner-estimator to avoid data leakage.
and the HierarchicalClustering
estimator
to form the clusters:
inner_estimator = MeanRisk(
objective_function=ObjectiveFunction.MAXIMIZE_RATIO,
risk_measure=RiskMeasure.VARIANCE,
)
outer_estimator = RiskBudgeting(risk_measure=RiskMeasure.CVAR)
model1 = NestedClustersOptimization(
inner_estimator=inner_estimator,
outer_estimator=outer_estimator,
n_jobs=-1,
portfolio_params=dict(name="NCO-1"),
)
model1.fit(X_train)
model1.weights_
array([4.34537767e-02, 3.10825068e-03, 2.62481974e-08, 4.55244506e-02,
7.75882353e-02, 6.00662364e-02, 4.72997843e-02, 1.25133574e-01,
4.62230746e-02, 3.16523971e-02, 5.09574898e-08, 2.40359831e-03,
8.63991582e-02, 3.19342027e-02, 6.00533520e-02, 4.79346359e-02,
9.30699910e-02, 5.98335873e-02, 4.48409191e-02, 9.34806984e-02])
Dendrogram#
To analyze the clusters structure, we can plot the dendrogram. The blue lines represent distinct clusters composed of a single asset. The remaining colors represent clusters of more than one asset:
model1.clustering_estimator_.plot_dendrogram(heatmap=False)
The horizontal axis represent the assets. The links between clusters are represented as upside-down U-shaped lines. The height of the U indicates the distance between the clusters. For example, the link representing the cluster containing Assets HD and WMT has a distance of 0.5 (called cophenetic distance).
When heatmap
is set to True, the heatmap of the reordered distance matrix is
displayed below the dendrogram and clusters are outlined with yellow squares:
model1.clustering_estimator_.plot_dendrogram()
Linkage Methods#
The hierarchical clustering can be greatly affected by the choice of the linkage
method. In the HierarchicalClustering
estimator, the default
linkage method is set to the Ward variance minimization algorithm, which is more
stable and has better properties than the single-linkage method which suffers from the
chaining effect.
To show this effect, let’s create a second model with the single-linkage method:
model2 = NestedClustersOptimization(
inner_estimator=inner_estimator,
outer_estimator=outer_estimator,
clustering_estimator=HierarchicalClustering(
linkage_method=LinkageMethod.SINGLE,
),
n_jobs=-1,
portfolio_params=dict(name="NCO-2"),
)
model2.fit(X_train)
model2.clustering_estimator_.plot_dendrogram(heatmap=True)
Distance Estimator#
The distance metric used has also an important effect on the clustering. The default is to use the distance of the pearson correlation matrix. This can be changed using the distance estimators.
For example, let’s create a third model with a distance computed from the absolute value of the Kendal correlation matrix:
model3 = NestedClustersOptimization(
inner_estimator=inner_estimator,
outer_estimator=outer_estimator,
distance_estimator=KendallDistance(absolute=True),
n_jobs=-1,
portfolio_params=dict(name="NCO-3"),
)
model3.fit(X_train)
model3.clustering_estimator_.plot_dendrogram(heatmap=True)
Clustering Estimator#
The above models used the default HierarchicalClustering
estimator. This can be replaced by any sklearn
or skfolio
clustering estimators.
For example, let’s create a new model with sklearn.cluster.KMeans
:
model4 = NestedClustersOptimization(
inner_estimator=inner_estimator,
outer_estimator=outer_estimator,
clustering_estimator=KMeans(n_init="auto"),
n_jobs=-1,
portfolio_params=dict(name="NCO-4"),
)
model4.fit(X_train)
model4.weights_
array([3.89201402e-02, 6.47132232e-02, 2.41496762e-08, 4.15772154e-02,
7.27864187e-02, 5.52639916e-02, 4.31986173e-02, 6.19951971e-02,
4.25275788e-02, 6.02991622e-02, 3.18991339e-08, 4.87431630e-08,
7.71004988e-02, 5.56600891e-02, 2.62288984e-02, 8.33913424e-02,
8.94663490e-02, 5.82229012e-02, 4.09529501e-02, 8.76953218e-02])
To compare the NCO models, we use an equal weighted benchmark using
the EqualWeighted
estimator:
bench = EqualWeighted()
bench.fit(X_train)
bench.weights_
array([0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05])
Prediction#
We predict the models and the benchmark on the test set:
population_test = Population([])
for model in [model1, model2, model3, model4, bench]:
population_test.append(model.predict(X_test))
population_test.plot_cumulative_returns()
Composition#
Let’s plot each portfolio composition:
fig = population_test.plot_composition()
show(fig)
Total running time of the script: (0 minutes 2.762 seconds)